Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Basel) ; 11(4)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38132917

RESUMO

Neisseria meningitidis (N. meningitidis) serogroup B (MenB) is the leading cause of invasive meningococcal disease worldwide. The pathogen has a wide range of virulence factors, which are potential vaccine components. Studying the genetic variability of antigens within a population, especially their long-term persistence, is necessary to develop new vaccines and predict the effectiveness of existing ones. The multicomponent 4CMenB vaccine (Bexsero), used since 2014, contains three major genome-derived recombinant proteins: factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisserial adhesin A (NadA). Here, we assessed the prevalence and sequence variations of these vaccine antigens in a panel of 5667 meningococcal isolates collected worldwide over the past 10 years and deposited in the PubMLST database. Using multiple amino acid sequence alignments and Random Forest Classifier machine learning methods, we estimated the potential strain coverage of fHbp and NHBA vaccine variants (51 and about 25%, respectively); the NadA antigen sequence was found in only 18% of MenB genomes analyzed, but cross-reactive variants were present in less than 1% of isolates. Based on our findings, we proposed various strategies to improve the 4CMenB vaccine and broaden the coverage of N. meningitidis strains.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis Sorogrupo B , Neisseria meningitidis , Humanos , Antígenos de Bactérias/genética , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/genética , Eficácia de Vacinas , Neisseria meningitidis Sorogrupo B/genética , Adesinas Bacterianas/genética , Neisseria meningitidis/genética , Neisseria , Biologia Computacional , Prognóstico
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047138

RESUMO

The human pathogen Neisseria gonorrhoeae uses a homologous recombination to undergo antigenic variation and avoid an immune response. The surface protein pilin (PilE) is one of the targets for antigenic variation that can be regulated by N. gonorrhoeae mismatch repair (MMR) and a G-quadruplex (G4) located upstream of the pilE promoter. Using bioinformatics tools, we found a correlation between pilE variability and deletion of DNA regions encoding ngMutS or ngMutL proteins, the main participants in N. gonorrhoeae methyl-independent MMR. To understand whether the G4 structure could affect the ngMutL-mediated regulation of pilin antigenic variation, we designed several synthetic pilE G4-containing oligonucleotides, differing in length, and related DNA duplexes. Using CD measurements and biochemical approaches, we have showed that (i) ngMutL preferentially binds to pilE G4 compared to DNA duplex, although the latter is a cognate substrate for ngMutL endonuclease, (ii) protein binding affinity decreases with shortening of quadruplex-containing and duplex ligands, (iii) the G4 structure inhibits ngMutL-induced DNA nicking and modulates cleavage positions; the enzyme does not cleave DNA within G4, but is able to bypass this noncanonical structure. Thus, pilE G4 may regulate the efficiency of pilin antigenic variation by quadruplex binding to ngMutL and suppression of homologous recombination.


Assuntos
Proteínas de Fímbrias , Neisseria gonorrhoeae , Humanos , Proteínas de Fímbrias/metabolismo , Neisseria gonorrhoeae/genética , Reparo de Erro de Pareamento de DNA , Variação Antigênica , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...